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ABSTRACT

Magnetized plasma columns and extended magnetic structures with both foot points anchored to

a surface layer are an important building block of astrophysical dissipation models. Current loops

shining in X-rays during the growth of plasma instabilities are observed in the corona of the Sun and

are expected to exist in highly magnetized neutron star magnetospheres and accretion disk coronae.

For varying twist and system sizes, we investigate the stability of line-tied force-free flux tubes and

the dissipation of twist energy during instabilities using linear analysis and time-dependent force-free

electrodynamics simulations. Kink modes (m = 1) and efficient magnetic energy dissipation develop

for plasma safety factors q ≲ 1, where q is the inverse of the number of magnetic field line windings

per column length. Higher order fluting modes (m > 1) can distort equilibrium flux tubes for q > 1

but induce significantly less dissipation. In our analysis, the characteristic pitch p0 of flux tube field

lines determines the growth rate (∝ p30) and minimum wavelength of the kink instability (∝ p−1
0 ).

We use these scalings to determine a minimum flux tube length for the growth of the kink instability

for any given p0. By drawing analogies to idealized magnetar magnetospheres with varying regimes

of boundary shearing rates, we discuss the expected impact of the pitch-dependent growth rates for

magnetospheric dissipation in magnetar conditions.

Keywords: stars: magnetars — plasmas — magnetic fields — instabilities — methods: numerical

1. INTRODUCTION

Magnetospheric dissipation likely drives at least some

of the abundant X-ray activity observed from com-

pact object magnetospheres with active coronae, such

as magnetars (e.g., Göğüş et al. 1999, 2000, 2001; Rea

et al. 2009; Rea & Esposito 2010; Kaspi & Beloborodov

2017; Esposito et al. 2020) and magnetized black hole ac-

cretion disks (e.g., Haardt et al. 1994; Di Matteo et al.

1999; Chartas et al. 2009; Uttley et al. 2014; Wilkins &

Gallo 2015). The stability and dynamics of flux bundles

in (highly) magnetized environments are well-studied

and observed, including for applications to astrophys-

ical jets (e.g., Lyubarskii 1999; Giannios & Spruit 2006;
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Lapenta et al. 2006; Narayan et al. 2009; Alves et al.

2018; Bromberg et al. 2019; Davelaar et al. 2020) and

the solar corona (e.g., Linton et al. 1998; Lapenta et al.

2006; Kumar & Cho 2014; Florido-Llinas et al. 2020;

Xu et al. 2020; Quinn & Simitev 2022). Yet, insights

from the considered systems, often periodic or highly

constrained by the specific astrophysical scenario, can-

not answer the most fundamental questions for highly

magnetized flux tubes with field line footpoints frozen

(line-tied) to a stellar or disk surface boundary at both

ends: If, when, and how does a flux tube become unsta-

ble and what is the amount of dissipated magnetic energy

during its instability?

This work combines insights from different fields of

plasma astrophysics. First, we exploit the vast litera-

ture on magnetic flux rope dynamics in the solar corona

(e.g., Amari et al. 2003; Gerrard et al. 2004; Török &

Kliem 2005; Török et al. 2010; Gordovskyy & Brown-

ing 2011; Gordovskyy et al. 2014; Pinto et al. 2016;
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Ripperda et al. 2017a,b; Sauppe & Daughton 2018),

where the injection of twist and helicity from surface

motion produces a variety of dissipative events. Sec-

ond, we use well-established constraints from laboratory

plasma physics (e.g., Hazeltine & Meiss 2003; Bergerson

et al. 2006; Longaretti 2008). The so-called safety fac-

tor denotes the inverse of the ratio of field line windings

per column length and indicates the susceptibility of a

flux tube to plasma instabilities. Third, we repurpose

numerical methods from the study of relativistic jets.

Growth rates of perturbations to rotating equilibrium

flux tubes of infinite length were derived numerically by

Sobacchi et al. (2017), and we closely follow their imple-

mentation and analysis. Finally, we use the results from

three-dimensional numerical models of a global magne-

tar magnetosphere to evaluate the astrophysical impli-

cations of our findings. Carrasco et al. (????) and then

with broader parameter ranges Mahlmann et al. (2023)

find eruption scenarios that range in onset time and dis-

sipation for flux tubes twisted at one end by surface

motions. However, their work does not explore a reli-

able instability criterion on the eruption of 3D twisted

flux tubes. This work analyses the plasma safety factor

as such an instability criterion.

Force-free electrodynamics (FFE), the vanishing-

inertia limit of ideal magnetohydrodynamics (MHD),

is a good approximation for modeling the global dy-

namics of highly magnetized magnetospheric plasma

(see, e.g., Gruzinov 1999; Blandford 2002; Komissarov

2004; Spitkovsky 2006; Parfrey et al. 2012; Carrasco &

Reula 2017; Most & Philippov 2020; Yuan et al. 2020;

Ripperda et al. 2021). FFE methods gain efficiency

by disregarding the exact physics of non-ideal dissipa-

tion, namely the screening of electric fields E∥ along

the magnetic field or in electrically dominated regions

(E > B). However, especially with high-order numer-

ical techniques, one can capture with good accuracy

the evolution of magnetic pressure and tension as well

as (non)linear interactions of plasma modes. In this

work, we use FFE to model the growth of instabilities

in perturbed flux tube equilibria with static line-tied

boundaries. We probe an instability criterion for the

onset of the kink mode and give limits on the dissipated

magnetic energy for different evolution scenarios.

This paper is organized as follows. Section 2 semi-

analytically studies the linear growth of perturbations

to force-free equilibrium flux tubes. Section 3 validates

the expected instability growth (Section 3.1) and ana-

lyzes the dissipation of twist energy for various flux tube

parameters (Section 3.2). Our discussion in Section 4

provides scalings and limits of the instability growth

(Section 4.1), applies our findings to magnetized astro-

a

b

Perfect conductor 

boundary

Twisted magnetic 
field lines

a) Bent coronal flux tubes
b) Simplified flux tubes

Figure 1. Schematic illustration of the configurations stud-
ied in this paper (panel b) and their astrophysical context
(panel a). Coronal flux ropes, as observed on the Sun and
expected around magnetars and magnetized accretion disks,
are usually bent (panel a) with magnetic field lines frozen to a
surface layer. We mimic such surface layers by perfectly con-
ducting surfaces as boundary conditions in our simulations.
Studying the stability of bent flux tubes on arbitrary back-
ground magnetic fields is not straightforward. We, therefore,
analyze simplified flux tubes as twisted magnetic field lines
embedded in a uniform background magnetic field (panel b).

physical coronae (Sections 4.2 and 4.3), and discusses

limitations (Section 4.4). We state conclusions in Sec-

tion 5 and give additional details on the instability evo-

lution in Appendix A.

2. FORCE-FREE FLUX TUBE EQUILIBRIA

Formed by twisted magnetic field lines arched with

foot points frozen into a surface layer, coronal flux ropes

are expected in several astrophysical systems, such as

stars and magnetized accretion disks (see introductory

references). Surface motions can drag along the line-tied

magnetic field lines and disrupt the magnetized flux tube

equilibria. To study the stability of highly magnetized

twisted magnetic fields, we analyze simplified flux tube

geometries embedded in uniform background magnetic

fields (see Figure 1). We evaluate Maxwell’s equations,

c∇×E = −∂tB , (1)

∇ ·E = 4πρ , (2)

c∇×B = 4πj + ∂tE , (3)

∇ ·B = 0 , (4)
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for ideal electric fields with frozen-in magnetic flux

E = −v

c
×B, (5)

and for a vanishing Lorentz force

ρE +
j

c
×B = 0. (6)

For stationary electromagnetic fields, Equation (6) be-

comes the equilibrium condition

(∇ ·E)E + (∇×B)×B = 0. (7)

Introducing the field line angular velocity vϕ = rΩF in

cylindrical coordinates (r, ϕ, z) and axisymmetry, the

only non-vanishing component of the electric field is

Er = −rΩFBz/c. The angular velocity and correspond-

ing electric field are conserved along flux surfaces. In

this geometry, the radial component of Equation (7)

yields the Grad-Shafranov equation of a flux tube:

∂r

[
r2ΩFBz

c

]
ΩFBz

c
= Bz∂rBz +

Bϕ

r
∂r [rBϕ] (8)

We express the magnetic field Bϕ in the orthonormal ba-

sis. This work studies line-tied force-free equilibria with

footpoints anchored to perfectly conducting boundaries

and a vanishing field line angular velocity ΩF . In this

limit, Equation (8) becomes

rBz∂rBz = −Bϕ∂rBϕ ⇒ r
Bz

Bϕ
= −∂r [rBϕ]

∂rBz
. (9)

We can define the inverse pitch parameter p = Bϕ/Bz

and write Equation (9) as

1 = −p2 −
(
p2

r
+ p ∂rp

)
Bz

∂rBz
. (10)

This equation (as derived throughout the literature, e.g.,

Goldston 2020) determines the equilibrium magnetic

fields of a static flux tube without field line rotation

for radial profiles of the pitch p(r). In the following, we

evaluate the stability of flux tubes with

p(r) = p0r
αf(r). (11)

For a characteristic length scale r0, we choose f(r) =

0.5 × tanh[(r/r0 − a)/b] with a ≈ 1.11 and b = 0.1.

This choice induces a pitch profile with a maximum at

r/r0 = 1, vanishing for r ≫ r0. For the following insta-

bility analysis, we use α ∈ {1, 2} to probe different pitch

profiles in the flux tube. By integrating Equation (10)

we generate equilibrium magnetic fields for boundary

conditions Bz(r ≫ r0) = Bbg, where Bbg = Bbgẑ.
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Figure 2. Growth rates of the m = 1 mode for varying
pitch and profiles of the twisted flux tube (Equation 11)
as a function of the unstable mode wavelength λ. Circles
indicate the numerically derived rates for α ∈ {1, 2} and
p0 ∈ {0.5, 0.75, 1.0, 1.25, 1.5}. We indicate the critical length
of safety factor q = 1 by vertical lines for different pitch pa-
rameters p0.

2.1. Instability analysis

We use the numerical method introduced by Sobacchi

et al. (2017) to find growth rates for linear instabilities

of flux tubes with inverse pitch profiles given by Equa-

tion (11). We numerically derive growth rates of linear

perturbations ξ of the form

ξ ∝ ξ(r)× ei(ωt+mϕ−kz). (12)

Here, ξ(r) is the complex-valued perturbation along

the flux tube radius with frequency ω and wave num-

bers (m, k) along the ϕ and z-directions, respectively.

The vertical wavelength associated with such a per-

turbation is given by λ = 2π/k and its growth rate

by the imaginary contribution Im(ω). In practice, we

discretize a complex-valued Grad-Shafranov equation

for perturbations ξ to force-free equilibria as intro-

duced by Lyubarskii (1999, Equation 20) and Sobacchi

et al. (2017, Equation 13) on a one-dimensional mesh

along the radial direction of the flux tube. For given

wave numbers (m, k), an initially estimated complex

frequency ω is then driven to a solution of the Grad-

Shafranov equation by minimizing the residual error of

the shooting method (e.g., Vetterling & Press 1992).

2.2. The m = 1 (kink) mode

We first quantify the dynamics of the fastest growing

non-axisymmetric instability of the flux tubes, that is,

the kink mode. A commonly employed measure of the

susceptibility of magnetic columns to kink instability is

the so-called safety factor q. This parameter represents

the inverse of the number of magnetic field line windings

distributed along the tube length L:

q ≡ 2πr0
L

Bz

Bϕ
=

2πr0
Lp

. (13)
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Figure 3. Growth rates of the m = 2 (fluting) mode, as
Figure 2.

In the setup given by Equation (11), the safety factor is

minimal at r/r0 = 1. An instability is expected for q ≲
1, and for each radial pitch profile we define the critical

length corresponding to this threshold as L0 = 2πr0/p0.

In Figure 2, we display the growth rates for the kink

mode in configurations given by Equation (11) as a func-

tion of wavelength λm=1 = 2π/km=1 for varying pitch

profiles. We indicate the critical length L0 for which

q = 1 in Equation (13) by vertical lines. The actual sys-

tem length then determines the instability growth. For

wavelengths L < L0, no unstable m = 1 modes can be

found. Therefore, the safety factor threshold of q = 1

is a valid criterion for the onset of the kink instability.

With flux tubes long enough to allow for unstable wave-

lengths to fit into the system, the fastest growing mode

with L0 < λm=1 < L will dominate. The growth of the

kink mode becomes faster for increasing pitch factor p0.

These basic features hold for the different radial pro-

files of the inverse pitch with α ∈ {1, 2}. However, the

overall growth rates are significantly lower for larger α

(as a consequence of the non-linear profile of the pitch

parameter).

2.3. The m = 2 (fluting) mode

We extend the instability analysis to the m = 2 mode

in Figure 3. Modes with m > 1 grow with wavelengths

shorter than the critical length L0, below which the

m = 1 (kink) mode is suppressed. Again, their max-

imum growth rates increase for larger values of p0. As

in the case of the m = 1 (kink) mode, growth rates

are significantly reduced for paraboloidal (α = 2) pitch

profiles when compared to linear (α = 1) pitch profiles.

Comparing the growth rates between the m = 1 mode

(Figure 2) and the m = 2 mode (Figure 3), one finds

ratios of Im(ωm=2)/Im(ωm=1) = 0.75 − 0.93 for α = 1

and Im(ωm=2)/Im(ωm=1) = 0.58 − 0.72 for α = 2. Al-

though these measurements confirm the m = 1 mode

as the fastest-growing instability, the growth rate of the

m = 2 mode can become comparable. We evaluate the

possibility of mode mixing in the following sections on

simulated instability dynamics.

3. SIMULATIONS

We use FFE simulations to examine the instabil-

ity growth in flux tubes described by Equation (11).

For this, we employ a high-order FFE method with

optimized hyperbolic/parabolic cleaning parameters

(Mahlmann et al. 2020a,b; Mahlmann & Aloy 2021)

that benefits from the Carpet driver (Goodale et al.

2003; Schnetter et al. 2004) and the Einstein Toolkit

(Löffler et al. 2012; Zlochower et al. 2022)1.

The simulations fill a rectangular domain of size x ×
y × z = [−4r0, 4r0] × [−4r0, 4r0] × [0, L] with resolu-

tion ∆x = ∆y = ∆z = r0/N . We choose N = 20

as the number of grid points resolving the flux tube

radius. The boundaries in the xy-directions are peri-

odic. In the z-direction we use perfectly conducting

surfaces with frozen-in field lines (see Munz et al. 2000;

Mahlmann et al. 2023). Simulations are initialized with

background magnetic fields Bz and Bϕ as solutions to

Equation (10) determined by specifying the pitch pro-

file in Equation (11). The employed high-order FFE

method suppresses discretization noises required to seed

the instability growth. Therefore, we initialize the drift-

velocity perturbation

vr = v0 sin (kzz) sin (mϕ) f (r) , (14)

where v0/c = 0.01, kz = 2π/L, and m = 1. In practice,

this drift perturbation is set up by initializing electric

fields according to Equation (5).

3.1. Instability dynamics

We first isolate the instability dynamics of force-free

flux tubes for the m = 1 (kink), and m = 2 (fluting)

modes. To this end, we follow the evolution of a setup

with α = 1 and p0 = 0.75 for two different flux tube

lengths a0 ≡ L/r0 = 8 and L/r0 = 14. As shown in

Figure 2, the kink mode of this configuration does not

grow below L/r0 ≈ 8.4, and the maximum growth rate

of the m = 1 mode is captured for L/r0 ≳ 9.2. Both

configurations allow for the m = 2 (fluting) mode to

grow, as shown in Figure 3. We use the projection Λ of

the conserved force-free current along the magnetic field

to visualize flux tubes in arbitrary field line geometries.

This component of the current can be written in the

form j∥ = λB, with ∇Λ ·B = 0, hence, Λ constant along

magnetic field lines.

Figure 4 shows the field line configuration and cur-

rents after the onset of instability for L/r0 = 14 (ac-

1 http://www.einsteintoolkit.org

http://www.einsteintoolkit.org
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Figure 4. Three-dimensional visualization of the instability
of a selected flux tube (α = 1, p0 = 0.75, L/r0 = 14). We
show views of the field-aligned current Λ along the x-axis (a),
the y-axis (b), the z-axis (c), and a diagonal view (d). In this
configuration, the m = 1 (kink) mode dominates, and strong
currents wind around the initial flux tube center. Figure 10
shows the time evolution of this setup.

Figure 5. As Figure 4 for a selected flux tube (α = 1,
p0 = 0.75, L/r0 = 8). In this configuration, the m = 1
(kink) mode is suppressed, the m = 2 (fluting) mode dom-
inates, and strong currents quench around the initial flux
tube center. Figure 9 shows the time evolution of this setup.

companied by significant dissipation of twist energy, see

Section 3.2). The setup develops clear features of the

m = 1 (kink) mode, namely asymmetric variations of

currents along the toroidal direction. The flux tube cur-

rent cross-section in panel c of Figure 4 exhibits typical

structures of the kink instability (as discussed by Dave-

laar et al. 2020; Mahlmann et al. 2023).

The development of the kink mode is suppressed for

the L/r0 = 8 setup shown in Figure 5. The instability

develops differently from the longer flux tube discussed

above. Strong currents develop with an m = 2 sym-

metry along the toroidal direction. The characteristic

fluting manifests as a thinning of the flux tube in the

y-direction with bulging along the x-direction. We note

that both setups evaluated in this section (L = 8 and

L = 14) become unstable at similar times. As estab-

lished in Section 2.1, the maximum growth rates of the

m = 1 and m = 2 modes are comparable. We find
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Figure 6. Energy dissipated during the evolution of per-
turbed flux tube equilibria for various pitch profiles with
α ∈ {1, 2} and p0 ∈ {0.5, 0.75, 1.0, 1.25, 1.5}. We display
measurements of the dissipated energy ediss/etwist and a mov-
ing average (gray line). Filled circles denote setups that de-
velop instability; empty circles represent configurations that
did not show any dissipation above the numerical diffusivity.
The dashed vertical lines indicate the critical safety factor
(q = 1). The kink (m = 1) mode will grow for setups lo-
cated to the left of this line.

Im(ωm=2)/Im(ωm=1) ≈ 0.048/0.052 = 0.92 (see Fig-

ures 2 and 3). We study the dependence of twist dissi-

pation on the flux tube length and simultaneous growth

of the kink and higher m modes in the following section.

3.2. Dissipation of twist energy

We scan the parameter space of pitch profiles by vary-

ing α and p0 and measuring the dissipated magnetic en-

ergy ediss with respect to the initial twist energy

etwist =

∫
dV

1

2
[B (t = 0)−Bbg]

2
. (15)

To this end, we evolve perturbed equilibrium states in

time for a duration of ct/r0 = 300 to 500, making sure

that the dynamical phase of the instability is fully cap-

tured and dissipation has returned to the low level of

numerical diffusion.

Figure 6 displays the twist energy dissipation as a

function of the safety factor q for a set of 58 different

flux tubes. For large safety factors q ≫ 1, no notable

instability occurs, and dissipation is limited to numer-

ical diffusion regardless of the pitch profile α (empty

circles). Sufficiently low safety factors q ≳ 1 allow for

the growth of fluting (m = 2) or higher order modes.

However, the dissipation in this region of the parameter

space remains low with ediss/etwist ≲ 0.2. For q ≲ 1

the m = 1 (kink) mode can grow, as was shown in Sec-

tion 2.1. The dissipation of twist energy jumps to larger

values at q ≈ 1, ranging between ediss/etwist ≈ 0.6 for

α = 1 and ediss/etwist ≈ 0.4 for α = 2. For very low

safety factors q ≪ 1 the fraction of dissipated energy

ediss/etwist increases further to ediss/etwist ≈ 0.8.

Configurations with q ≲ 1 develop both m = 1 (kink)

and m = 2 (fluting) or higher order modes. If the scale

of the maximum growth rate of the kink instability is

captured, the m = 1 mode dominates in these cases.

The growth of the instabilities quickly drives the system

to an event with rapid dissipation and a rearrangement

into a relaxed state of lower energy. Once the fluting in-

stability develops for q > 1, the system rearranges and

dissipates energy equally fast. For q ≈ 1, when the sys-

tem size allows for the development of the m = 1 mode

but does not yet capture its maximum growth rate, the

instability dynamics is more complex. First, m = 2 or

higher order modes develop, driving the fluting of the

flux tube and mild dissipation of twist energy. At later

times, the m = 1 (kink) instability significantly reduces

the twist energy. Such events at the threshold of the

critical safety factor with the subsequent development of

modes of lower order can last three to five times longer

than the cases of q < 1 and q > 1.

4. DISCUSSION

4.1. Scales and limits of the instability growth

We confirm in Section 2.1 that the m = 1 (kink)

mode is the fastest-growing instability of the system

that also dissipates twist energy most efficiently (Sec-

tion 3.2). Figure 7 (bottom panel) extends the growth

rate analysis shown in Section 2.1 for the m = 1 (kink)

mode to p0 = Bϕ/Bz ≪ 1. All probed configurations,

even with a small initial twist, have unstable solutions

with a maximum growth rate

Im (ωmax) r0
c

≈ ηp30 for p0 < 1. (16)

Here, η is a parameter that depends on the radial pitch

profile; it is obtained empirically as η ≈ 0.15 for α = 1

and η ≈ 0.03 for α = 2. We can estimate the time scale

for the growth of instabilities as ti ≡ 1/Im(ωmax):

ti = 0.33

(
10−5

Im(ωmax)r0/c

)( r0
1km

)
s. (17)
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Figure 7. Maximum growth rate of the m = 1 (kink) mode
(bottom panel) and corresponding wavelength (top panel)
for an extended range of pitch parameters p0. Configurations
with a very small initial twist p0 ≪ 1 still show a growth of
the kink mode. However, their maximum growth rate de-
cays fast with Im(ωmax)r0/c ∝ p30 (dashed gray line, bottom
panel) for p0 ≪ 1, and the required system length for the
m = 1 (kink) mode scales with λmax/r0 ∝ 1/p0 (dashed gray
line, top panel).

By combining Equations (16) and (17) we can estimate

the growth rate of the kink instability close to the critical

safety factor q ≈ 1, where the flux tube aspect ratio is

a0 ≡ L0/r0 ≈ 2π/p0:

tq≈1
i ≈ 4.0× 10−6a30

(
0.15

η

)3 ( r0
1km

)
s. (18)

The top panel of Figure 7 confirms the relation a0 ∝
1/p0. The fastest growing wavelength of the m = 1

(kink) mode requires flux tubes with aspect ratios of up

to a0 > 100 for p0 ≪ 1. In other words, flux tubes have

to be long and ‘skinny’ to become unstable for small

values of p0.

The instability analysis and simulations presented in

this work have magnetic equilibria (Equation 8) as a

starting point. However, the time scale of instability

growth has to be compared to other characteristic time

scales of the system. In realistic scenarios, one relevant

scale is the rate at which a flux tube is twisted by foot-
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Figure 8. Estimate of a possible pitch parameters (p0) dis-
tribution for critical flux tubes (q = 1) in a dipolar magnetar
magnetosphere (adapted from Mahlmann et al. 2023, with
gray dots deniting the parameter space explored by their
global magnetospheric simulations). In a dipole field, flux
tubes are parametrized by the center footpoint colatitude on
the stellar surface θc, and the angular extent of the twisting
region 2θT . During the instability, the dipole magnetosphere
can either open up in a large-scale eruption, or energy is dis-
sipated locally (transition roughly at the dashed red line,
see Mahlmann et al. 2023). Critical flux tubes with p0 ≪ 1
require small r0 and larger lengths L, and thus, footpoints
closer to the poles.

point motions in the line-tied boundaries. We denote

the twisting time scale as ttwist and identify two rele-

vant regimes: The slow twisting regime with ti ≪ ttwist,

and the fast twisting regime with ttwist ≲ ti. In the slow

twisting limit, the pitch parameter p0 of a flux bun-

dle of fixed length L will gradually increase until the

system is disrupted by an m = 1 or higher-order insta-

bility. As the configuration slowly approaches q ≳ 1,

the dissipation during instability in this regime is likely

low (see Section 3.2 and Figure 6). In the fast-twisting

regime, the inverse pitch p0 can increase beyond the crit-

ical value for a fixed system size L. The safety factor

can, thus, reach q ≲ 1 and significant dissipation of twist

energy will likely occur (see Figure 6). Regardless of the

safety factor, currents remain in the domain after insta-

bility and relaxation to a steady state. As we discuss in

Appendix A, the total currents of disrupted flux tubes

drop less than their total twist magnetic fields. We inter-

pret our findings in the context of different astrophysical

environments in the following sections.

4.2. Kink (m = 1) instability in the magnetar corona

Twisted magnetic fields likely play a key role in the re-

gion of active plasma processes in the relativistic magne-
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tar magnetosphere, the so-called magnetar corona (see,

e.g., Beloborodov & Thompson 2007; Beloborodov 2013;

Chen & Beloborodov 2017). If their twist grows be-

yond a critical angle, the sheared dipole magnetosphere

can erupt in flaring events with large scale reconnec-

tion regions and energy dissipation (Parfrey et al. 2013;

Mahlmann et al. 2019; Yuan et al. 2020; Sharma et al.

2023). Three-dimensional flux tubes with twisting foot-

points in a disk-like patch on the magnetar surface al-

low for rich eruption dynamics with lateral (torus-like)

and helical (kink-like) instabilities (Carrasco et al. ????;

Mahlmann et al. 2023). Figure 8 adapts a visualiza-

tion of the threshold between large-scale global erup-

tions of the magnetosphere and confined eruptions by

Mahlmann et al. (2023, red dashed line). To connect

the global context of the magnetar magnetosphere to

the findings of this work, we display the magnetic pitch

p0 for critical flux tubes (q = 1) of different aspect

ratios. The aspect ratio a0 = L0/r0 is inferred from

the length of the center field line in a dipolar flux tube

as well as the radius r0 of the twisting disk inducing

foot point motion on the stellar surface (see Figure 1 in

Mahlmann et al. 2023). Flux tubes with low levels of

inverse pitch require small diameters with large aspect

ratios to become critical, a0 = L0/r0 = 2π/p0 for q = 1.

Shorter dipolar flux tubes located further away from the

poles need larger diameters and pitch parameters to be-

come critical. For the simulation parameters scanned

in Mahlmann et al. (2023, gray dots in Firgure 8), in-

stabilities occur after ct/L ≈ 25 for flux tubes closer to

the poles (θc = 30◦) and ct/L ≈ 100 for those closer to

the equator (θc = 60◦). In combination with the angu-

lar dependence of the radial magnetic field in the dipole

magnetosphere, Br = 2µ cos θ/r3, this difference in time

before eruption suggests a scaling in critical pitch that

is consistent2 with the contours displayed in Figure 8.

Time scales of field line displacement on the magne-

tar surface are not yet well constrained. They range

from slow quasi-steady shearing with ttwist on the or-

der of years (ωs > 1 rad yr−1, cf. Parfrey et al. 2012) to

rapid crust deformations with millisecond creep times

during flares (Thompson et al. 2017; Thompson 2022).

The slow shearing is clearly separated from the insta-

bility growth time ti. However, for aspect ratios of

a0 ≳ 6.3, Equation (18) projects growth times above

millisecond duration (also depending on the parameters

η and r0). Thus, rapid crust deformations can reach

2 Assuming Br(θc = 60◦)/Br(θc = 30◦) ≈ 0.57 and Bϕ(θc =
60◦)/Bϕ(θc = 30◦) ≈ 4, such that p(θc = 30◦)/p(θc = 60◦) ≈
0.14, roughly according to the difference in contours enclosing the
gray dots in Figure 8.

the fast twisting regime with ttwist ≲ ti. In this limit,

the safety factor can reach q < 1 due to the rapidly

driven growth of pitch p0. As a consequence, signifi-

cant part of the magnetospheric twist energy can dis-

sipate (see Figure 6). We note that the simulations in

Mahlmann et al. (2023) use ωs < 1/25× c/R∗, equating

to ttwist > 5.2× 10−3 (R∗/10km) s. For large aspect ra-

tios, or low pitch parameters p0, this choice of twist time

scale allows for ttwist ≲ ti and possibly enhances magne-

tospheric dissipation. We acknowledge the limitation of

such direct comparison between the straight flux tubes

discussed in this work and the dipolar magnetosphere in

Section 4.4.

4.3. Mixed instabilities in magnetized coronae

In the case of flux bundles twisting in the slow limit

of ti ≪ ttwist or if the twist injection ceases while q > 1,

m = 2 (fluting) and higher order modes can develop. As

we demonstrate in Section 2.1, the m = 2 mode grows

slower than the m = 1 mode, though their growth rates

are in general comparable. In the dynamic phase of the

instability, this coincidence of growth rates manifests by

mixing of the symmetric short wavelength fluting and

the asymmetric long wavelength kinking patterns (see

Appendix A). We find systems that are only susceptible

to the m = 2 mode to dissipate a comparably small frac-

tion of the twist energy (Figure 6) and maintain signif-

icant currents after relaxation (Appendix A). However,

the fluting develops with its short wavelengths and can

potentially drive turbulence even when the kink mode is

present. While them = 1 (kink) mode develops predom-

inantly around the center of the flux tube, the m = 2

(fluting) mode drives the dynamics at resonant surfaces

in the outer layers.

The possibility of mode mixing in flux tubes was dis-

cussed, though not observed, in the context of the solar

corona by Quinn & Simitev (2022). Instead of perturb-

ing a equilibrium configuration with a specific profile

that seed the growth of an m = 1 (kink) mode, Quinn

& Simitev (2022) rely on noise introduced by the con-

tinuous twisting of a flux tube to drive the instability.

With this strategy, which is somewhat closer to the real-

istic flux tube evolution, they allow for the development

of m > 1 modes that are usually not addressed in the

literature.3 Quinn & Simitev (2022) consider the role

of non-ideal effects for the flux tube dynamics in MHD

3 We note that the numerical work conducted for this paper
initially followed a similar approach. We especially considered the
late-stage evolution of flux tubes where the continuous motion of
footpoints was turned off after an initial twisting episode. In such
setups, we found kink-like and fluting-like dynamics, seeded purely
by the boundary and developing different levels of dissipation. The
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and find that the cumulative Ohmic heating is mainly

driven by the kink instability. The analysis we present

in Figure 6 equally suggests that most dissipation occurs

during the development of the m = 1 (kink) mode.

In contrast to Quinn & Simitev (2022) we do not find

a significantly delayed onset of the kink mode due to the

growth of m = 2 (fluting) patterns. This may be due

to the absence of resistive/viscous effects in FFE, which

effectively propagates all perturbations at the fastest ve-

locity, the speed of light. Still, for configurations erupt-

ing at q ≈ 1 we find a notable interaction between the

m = 1 and m = 2 modes (see Section 2.1). With

the growth of the kink mode suppressed initially, such

systems exclusively develop m = 2 (fluting) dynamics.

Once the configuration is no longer in equilibrium, the

flux tube changes its properties and the m = 1 (kink)

mode can grow regardless of its suppression in the ini-

tial state. Thus, for line-tied relativistic flux tubes of

critical length with q ≳ 1 the m = 2 mode can drive the

system to rapid dissipation by the kink instability.

4.4. Limitations

The presented simulations of flux tube dynamics use

the force-free limit of ideal MHD. Such FFE models

are not suitable to capture the conversion of magnetic

energy consistently due to the absence of information

about plasma inertial properties like particle number

densities or non-ideal electric fields (see Mahlmann et al.

2020b; Mahlmann & Aloy 2021). The measurements

of dissipation shown in Section 3.2, especially its time

scales, should therefore be understood as the energy loss

in the limit of rapid cooling of non-ideal fields. How a

magnetosphere with line-tied shear fills with plasma and

how active plasma processes can dissipate the injected

twist even without the onset of large-scale instabilities

was previously studied in reduced dimensionality (e.g.,

Beloborodov & Thompson 2007). Its consistent plasma

dynamics for realistic coronal geometries have to be fur-

ther evaluated by particle-in-cell methods.

After a disruption by an instability, especially those

occurring close to the critical value of q ≈ 1, some twist

energy and currents remain in the system (see Figure 6

and Appendix A). A continuing twist of the flux tube

foot points could drive further eruptions of configura-

tions with larger and larger twist energies (as modeled

by Mahlmann et al. 2023). However, in such secondary

and later events, the flux tubes are no longer in an ax-

isymmetric equilibrium as considered in this work. Cal-

culating the safety factor and corresponding instability

long evolution times until instability onset made the systematic
study of such setups prohibitive for a large parameter space.

criteria in non-axisymmetric states is less straightfor-

ward. It will require careful consideration of the flux

tube geometry, as in Stefanou et al. (2022) who derive

Grad-Shafranov equilibria of magnetospheres with non-

trivial twisted flux ropes. We defer studying the dy-

namic (in)stability of such configurations to future work.

Finally, this work focuses on cylindrical flux tubes

and disregards any curvature effects experienced by bent

structures commonly observed in the solar corona and

expected, for instance, around magnetars and magne-

tized accretion flows. We only use the presented find-

ings to qualitatively supplement models that take into

account coronal geometries. Such models have a track

record in the solar physics community (e.g., Amari et al.

2003; Gerrard et al. 2004; Török & Kliem 2005; Török

et al. 2010; Gordovskyy & Browning 2011; Gordovskyy

et al. 2014; Pinto et al. 2016; Ripperda et al. 2017a,b;

Sauppe & Daughton 2018). There are only a few

comparable works for global magnetospheric instabili-

ties around compact objects (e.g., Carrasco et al. ????;

Mahlmann et al. 2023; Most & Quataert 2023) that have

to be studied in greater detail in the future.

5. CONCLUSION

This paper examines the behavior of line-tied flux

tubes with an axial twist of p = Bϕ/Bz in the force-

free regime. We examine perturbations of force-free flux

tube equilibria both analytically (Section 2.1) and in

FFE simulations (Section 3.1). Depending on the flux

tube parameters, our analysis predicts and shows the de-

velopment of the kink (m = 1) and/or fluting (m = 2)

instabilities. To test the flux tubes’ susceptibility to the

m = 1 mode, we apply a stability indicator called the

safety factor q = 2πr0p/L, which represents the inverse

of the number of azimuthal windings of the magnetic

field along the flux tube length. Resulting analyses of

growth timescale and energy dissipation are then ap-

plied to astrophysical systems such as magnetars and

the lower solar corona.

The safety factor is the key criterion to determine if

line-tied FFE flux tubes without initial field line mo-

tion become kink unstable (see Figure 2). We find rapid

growth of the kink instability for q < 1. For q > 1, flut-

ing (m = 2) and higher m-modes may develop when the

flux tube is long enough to accommodate these modes.

For q ≳ 1, an initial deformation of the flux tube by

fluting modes can catalyze the development of the kink

instability (Section 3.1).

We tested two flux tube pitch profiles p(r) ∝ p0r
α

in this work, where α ∈ {1, 2}. Theoretically, we find

the α = 1 case generates larger growth rates for both the

kink and fluting instabilities. The maximum growth rate
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of the fluting mode is within 60–90% of the kink mode

(Figures 2 and 3), resulting in instabilities that evolve on

similar timescales. However, the fluting mode dissipates

only about 20% of the initial twist energy, while the

kink mode dissipates between 40–80% (Figure 6). The

maximum growth rate of the kink mode, Im(ωmax)r0/c,

scales as ηp30, where η is found experimentally to be

0.03–0.15 depending on the pitch profile (Figure 7). The

wavelength corresponding to this fastest growing m = 1

(kink) mode, λmax/r0, is proportional to p−1
0 .

The explosive release of magnetic energy in magneto-

spheres, including around magnetized compact objects

like magnetars and black hole accretion systems, can

be driven by the instability of twisted magnetic flux

bundles. Similar to coronal mass ejections of the Sun,

twisted flux tubes anchored to a neutron star or accre-

tion disk can erupt and dissipate magnetic energy when

their twist exceeds a critical value. In nature, the twist

in a flux tube is likely established by footpoint motions

of magnetic field lines in the line-tied boundary. In this

paper, we develop an intuition for the onset of insta-

bilities in line-tied force-free flux tubes and the dissi-

pation associated with such events. We suggest that

fast footprint shearing at the line-tied boundary can tap

the regime of efficient dissipation during m = 1 (kink)

instabilities (q < 1). However, if the shear builds up

slowly compared to the growth of the kink mode, it

is likely that higher-order instabilities distort the flux

tube with only little magnetospheric dissipation. This

by itself can drive flux tubes to states with localized

q ≲ 1 regions, though the safety factor is not straight-

forwardly obtained in non-axisymmetric configurations.

Our simulations and growth rate analysis confirm that

flux tubes of any pitch value Bz/Bϕ can become kink

unstable given sufficient length such that q ≲ 1 (see Sec-

tion 4). The idealized analysis and simulation of isolated

line-tied magnetic flux bundles presented in this paper

provide an intuition for the dynamics of flux tubes and

the corresponding dissipation limits that can be used

in the complex modeling of radiative plasma processes

around magnetars and magnetized accretion disks.
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Figure 9. Currents during the evolution of a selected flux tube (α = 1, p0 = 0.75, L/r0 = 8). The middle panel shows
structures that are characteristic of the m = 2 (fluting) mode. Significant currents remain in the relaxed state (right panel).
We provide an animated version of this figure as supplementary material (Rugg et al. 2023a).

APPENDIX

A. INSTABILITY EVOLUTION AND RELAXED STATES

It is instructive to follow the dynamics of the conserved force-free current λ throughout the instability development.

As discussed in Section 2.1, the length and pitch profile of flux tubes determines the dominantly growing modes and

sets the amount of dissipated twist energy ediss/etwist (Section 3.2). Short flux tubes with a safety factor q > 1 suppress

the kink mode (see Figure 2). Higher order modes, like the m = 2 (fluting) mode, can still grow in such systems. The

middle panel of Figure 9 shows a clear characteristic of the symmetric m = 2 (fluting) mode for a selected configuration

with α = 1, p0 = 0.75, and L = 8. Specifically, the flux tube develops a bulging in the xz-plane and thinning in the

yz-plane. Increasing the length of the same pitch configuration such that q ≲ 1 allows the growth of the m = 1 (kink)

mode, as shown in Figure 10. The middle panel of Figure 10 shows the symmetric short wavelength bulging and

thinning of the m = 2 (fluting) mode, as well as the asymmetric long wavelength runaway pattern of the m = 1 (kink)

mode. This characteristic shape of the m = 1 (kink) mode becomes more prominent for configurations with larger

initial pitch parameter p0, like the α = 1, p0 = 1.25, L = 10 setup shown in Figure 11.

With the dissipation of twist energy during the development of instabilities (see Figure 6), the considered systems

relax to a new steady state. In general, this relaxed state is no longer axiymmetric or solved by the force balance in

Equation (8). As shown in the right panels of Figures 9 to 11, currents remain in the final states of the evolution.

Configurations with suppressed m = 1 (kink) modes maintain significant and ordered currents in the relaxed state

(Figure 9). However, systems subject to the m = 1 (kink) instability end up with lower levels of current that extend

further than the initial flux tube boundary with patches of stronger currents (Figures 10 and 11). We quantify

the loss of current during the instability by measuring the change in total current λtot =
∫
λ dV in the domain.

Figure 12 shows the relative difference of initial and final currents ∆λtot/λtot,0 as a function of dissipated twist energy

ediss/etwist for all models in Section 3.2. These measurements demonstrate that currents persist for all configurations

in the final state of evolution. The change in total current is below the change of total twist magnetic fields, with

∆λtot/λtot,0 <
√
ediss/etwist.
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Figure 10. Currents during the evolution of a selected flux tube (α = 1, p0 = 0.75, L/r0 = 14). The middle panel shows
structures that are characteristic of the asymmetric m = 1 (kink) mode as well as the m = 2 (fluting) mode. The m = 2 mode
has shorter wavelengths than the m = 1 mode, as discussed in Section 2.1. In the relaxed state (right panel) some currents
remain, though currents are weaker than in the dynamic phase of shorter configurations (cf. Figure 9). We provide an animated
version of this figure as supplementary material (Rugg et al. 2023b).

Figure 11. Currents during the evolution of a selected flux tube (α = 1, p0 = 1.25, L/r0 = 10). The middle panel shows
structures that are characteristic of the dominating m = 1 (kink). Some currents remain in the relaxed state (right panel). We
provide an animated version of this figure as supplementary material (Rugg et al. 2023c).
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Figure 12. Change in total current ∆λtot/λtot,0 against dissipated energy ediss/etwist for the models described in Section 3.2.


